Introduction to Classical ML and Its Application in Econometric Research

Hsiu Hsuan Yeh

Dept of Econ

National Taiwan University

2023-06-14

Research Question

- who is a minimum wage worker
 - identify the potential workers who have been working had the minimum wage been different
- what is the effect of increasing minimum wage
 - increasing employment
 - decreasing unemployment
 - increasing labor force participation(LFP)

minimum wage classification

- traditional way
 - specify demographic groups such as the teens, low educational
 - distribution based (Cengiz et al. (2019))
- machine learning
 - larger and more various groups
 - · data driven which is no functional form

machine learning models

- elastic net
- decision tree
- random forest
- gradient boosting machine(GBM)
- support vector machine(SVM)
- neural network

in machine learning model our goal is to do good generalization:

- minimize the in sample error
- let the in sample error as close as the out sample error

when dose overfitting(bad generalization, low bias high variance) happen?

- small data size
- noise: stochastic, deterministic

overfitting from best $g_2 \in \mathcal{H}_2$ to best $g_{10} \in \mathcal{H}_{10}$?

overfitting from g_2 to g_{10} ? both yes!

how to combat overfitting?

- validation: leave one out, cross validation
- early stop
- blending (mix multiple model)

elastic net

elastic net = weighted lasso and Ridge

$$\min_{\boldsymbol{\beta}} Q(\boldsymbol{\beta}) + \lambda(\boldsymbol{\alpha}||\boldsymbol{\beta}||_2 + (1-\boldsymbol{\alpha})||\boldsymbol{\beta}||_1)$$

where

Q: objective function (loss)

λ: penalty term

• α : ratio of mixture

in this paper, thu author build a complex model by including all the features, their four-way interactions, and all of the interactions with the quadratic, cubic, and quartic terms of the age variable.

elastic net

L2 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} w_q^2 = \|\mathbf{w}\|_2^2$$

- convex, differentiable everywhere
- easy to optimize

L1 Regularizer

$$\Omega(\mathbf{w}) = \sum\nolimits_{q=0}^{Q} |w_q| = \|\mathbf{w}\|_1$$

- convex, not differentiable everywhere
- sparsity in solution

L1 useful if needing sparse solution

$$\begin{split} \mathcal{D} &= \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \} \\ \stackrel{\text{bootstrap}}{\Longrightarrow} & \tilde{\mathcal{D}}_t = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4) \} \end{split}$$

weighted E_{in} on \mathcal{D}

$$E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{4} \sum_{n=1}^{4} u_{n}^{(t)} \cdot [y_{n} \neq h(\mathbf{x}_{n})]$$

$$(\mathbf{x}_{1}, y_{1}), \ u_{1} = 2$$

$$(\mathbf{x}_{2}, y_{2}), \ u_{2} = 1$$

$$(\mathbf{x}_{3}, y_{3}), \ u_{3} = 0$$

 $(\mathbf{x}_4, \mathbf{y}_4), \mathbf{u}_4 = 1$

$E_{\rm in}$ on \tilde{D}_t

$$E_{\text{in}}^{0/1}(h) = \frac{1}{4} \sum_{(\mathbf{x}, y) \in \tilde{D}_t} \llbracket y \neq h(\mathbf{x}) \rrbracket$$
$$(\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1)$$
$$(\mathbf{x}_2, y_2)$$
$$(\mathbf{x}_4, y_4)$$

'improving' bagging for binary classification: how to re-weight for more diverse hypotheses?

$$\frac{g_t}{h \in \mathcal{H}} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

$$g_{t+1} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(\sum_{n=1}^{N} u_n^{(t+1)} \left[y_n \neq h(\mathbf{x}_n) \right] \right)$$

if g_t 'not good' for $\mathbf{u}^{(t+1)} \Longrightarrow g_t$ -like hypotheses not returned as $g_{t+1} \Longrightarrow g_{t+1}$ diverse from g_t

idea: construct $\mathbf{u}^{(t+1)}$ to make g_t random-like

$$\frac{\sum_{n=1}^{N} u_n^{(t+1)} \, [\![y_n \neq \underbrace{g_t(\mathbf{x}_n)} \!]\!]}{\sum_{n=1}^{N} u_n^{(t+1)}} = \frac{1}{2}$$

$$\Sigma_{n=1}^N u_n^{t+1} \mathbb{1}(y_n = g_t(x_n)) = \Sigma_{n=1}^N u_n^{t+1} \mathbb{1}(y_n \neq g_t(x_n))$$

$$\begin{split} \Sigma_{n=1}^{N} \Sigma_{n=1}^{N} u_{n}^{t+1} \mathbb{1}(y_{n} \neq g_{t}(x_{n})) \mathbb{1}(y_{n} = g_{t}(x_{n})) = \\ \Sigma_{n=1}^{N} \Sigma_{n=1}^{N} u_{n}^{t+1} \mathbb{1}(y_{n} = g_{t}(x_{n})) \mathbb{1}(y_{n} \neq g_{t}(x_{n})) \end{split}$$

$$\begin{split} \Sigma_{n=1}^{N} \frac{\Sigma_{n=1}^{N} u_{n}^{t+1} \mathbbm{1}(y_{n} \neq g_{t}(x_{n}))}{\Sigma_{n=1}^{N} u_{n}^{t+1}} \mathbbm{1}(y_{n} = g_{t}(x_{n})) = \\ \Sigma_{n=1}^{N} \frac{\Sigma_{n=1}^{N} u_{n}^{t+1} \mathbbm{1}(y_{n} = g_{t}(x_{n}))}{\Sigma_{n=1}^{N} u_{n}^{t+1}} \mathbbm{1}(y_{n} \neq g_{t}(x_{n})) \end{split}$$

$$\begin{split} \Sigma_{n=1}^{N} \epsilon_{t+1} \, \mathbb{1}(y_n &= g_t(x_n)) = \Sigma_{n=1}^{N} (1 - \epsilon_{t+1}) \mathbb{1}(y_n \neq g_t(x_n)) \\ \Sigma_{n=1}^{N} \sqrt{\epsilon_{t+1}^2} \, \mathbb{1}(y_n &= g_t(x_n)) = \Sigma_{n=1}^{N} \sqrt{(1 - \epsilon_{t+1})^2} \, \mathbb{1}(y_n \neq g_t(x_n)) \\ \Sigma_{n=1}^{N} \sqrt{\frac{\epsilon_{t+1}^2}{\epsilon_{t+1}(1 - \epsilon_{t+1})}} \, \mathbb{1}(y_n &= g_t(x_n)) = \Sigma_{n=1}^{N} \sqrt{\frac{(1 - \epsilon_{t+1})^2}{\epsilon_{t+1}(1 - \epsilon_{t+1})}} \, \mathbb{1}(y_n \neq g_t(x_n)) \\ \Sigma_{n=1}^{N} \sqrt{\frac{\epsilon_{t+1}}{(1 - \epsilon_{t+1})}} \, \mathbb{1}(y_n &= g_t(x_n)) = \Sigma_{n=1}^{N} \sqrt{\frac{(1 - \epsilon_{t+1})}{\epsilon_{t+1}}} \, \mathbb{1}(y_n \neq g_t(x_n)) \\ \Sigma_{n=1}^{N} \frac{1}{\blacklozenge_{t+1}} \, \mathbb{1}(y_n &= g_t(x_n)) = \Sigma_{n=1}^{N} \blacklozenge_{t+1} \, \mathbb{1}(y_n \neq g_t(x_n)) \\ \begin{cases} \blacklozenge_{t+1} > = 1 & \iff \epsilon_{t+1} < = \frac{1}{2} \\ \alpha_{t+1} &= \log(\blacklozenge_{t+1}) > = 0 & \iff \blacklozenge_{t+1} > = 1 \end{cases} \end{split}$$

```
\mathbf{u}^{(1)} = [\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}]

for t = 1, 2, ..., T
```

- ① obtain g_t by $\mathcal{A}(\mathcal{D}, \mathbf{u}^{(t)})$, where \mathcal{A} tries to minimize $\mathbf{u}^{(t)}$ -weighted 0/1 error
- 2 update $\mathbf{u}^{(t)}$ to $\mathbf{u}^{(t+1)}$ by

3 compute $\alpha_t = \ln(\blacklozenge_t)$

return
$$G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$$

Julia implementation

```
@inbounds for t = eachindex(s, k, theta, alpha)
    loss, = dropdims(mean(incorrect ptr. dims=1); dims=1)
    weighted loss; = dropdims(mean(u, .* incorrect ptr, dims=1); dims=1)
    idx = argmin(weighted loss:)
    loss[t] = loss<sub>t</sub>[idx]
    best_pred[:, t] = pred[:, idx]
    k[t] = ceil(Int64, idx[1]/n)
    theta[t] = \theta[idx[1]]
    s[t] = [-1, 1][idx[2]]
    opt_correct_ptr = best_pred[:, t] .== labels
    opt incorrect ptr = best pred[:, t] .!= labels
    \epsilon_t = (opt\_incorrect\_ptr' * u_t) / sum(u_t)
    diamond_t = sgrt((1-\epsilon_t)/\epsilon_t)
    alpha[t] = log(diamond_t)
    ut = (opt_incorrect_ptr .* ut) * diamondt +
         (opt correct ptr .* ut) / diamondt
    next!(p)
```

Gradient Boosting

AdaBoost Revisited: Example Weights

$$u_n^{(t+1)} = \begin{cases} u_n^{(t)} \cdot \lozenge_t & \text{if incorrect} \\ u_n^{(t)}/\lozenge_t & \text{if correct} \end{cases}$$
$$= u_n^{(t)} \cdot \lozenge_t^{-y_n g_t(\mathbf{x}_n)} = u_n^{(t)} \cdot \exp\left(-y_n \alpha_t g_t(\mathbf{x}_n)\right)$$

$$u_n^{(T+1)} = u_n^{(1)} \cdot \prod_{t=1}^T \exp\left(-y_n \alpha_t g_t(\mathbf{x}_n)\right) = \frac{1}{N} \cdot \exp\left(-y_n \sum_{t=1}^T \alpha_t g_t(\mathbf{x}_n)\right)$$

- recall: $G(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})\right)$
- $\sum_{t=1}^{T} \alpha_t g_t(\mathbf{x})$: voting score of $\{g_t\}$ on \mathbf{x}

SVM

methodology

- use the machine learning model to predict who might be a potential minimum wage worker
 - hourly wage of less than 125% of the statutory minimum wage
 - high probability group: comprises the 10% of the population with the hightest likelihood of being affected by the policy.
 - high recall group: 75% of all minimum wage workers are captured
- worker-level selection criterion
 - there had not had been any prominent minimum wage events in the past 20 quarters
 - there is a prominent minimum wage change in the next 12 quarters
 - 469,174 observations, randomly draw 150, 000 for training

methodology

- prominent minimum wage change
 - (real)minimum wages increased by more than \$0.25
 - at least 2% of the workforce earned between the new minimum wage and the old minimum wage
- use DID to esitmate the change of wage, employment, unemployment, LFP in two groups
 - 8-year window around 172 prominent state-level minimum wage events
 - $y_{st}^g = \Sigma_{\tau=-3}^4 \beta_\tau treat_{st}^\tau + \Omega_{st} + \mu_s + \rho_t + u_{st}$
 - Ω_{st} : for small or federal in-creases (Cengiz et al. (2019))
 - $treat^{\tau}_{st}$: whether the minimum wage was increased τ years from date t in state s
 - cluster standard error by states

confusion matrix

confusion matrix

- Accuracy: $\frac{TP+TN}{TP+FN+FP+TN}$
- precision: $\frac{TP}{TP+FP}$
- ullet recall(sensitivity, true positive rate): $\frac{TP}{TP+FN}$
- false positive rate: $\frac{FP}{FP+TN}$

ROC AUC

AUPRC

data and features

- minimum wage worker prediciton: 1979-2019 CPS-ORG
 - Education group
 - Age group
 - Gender
 - Rural residency
 - Martial(married and spouse is present)
 - Race
 - Hispanic
 - Veteran
- labor market outcomes estimation: 1979-2019 CPS-Basic

evaluation

evaluation

- high probability group
 - threshold probability 0.35
 - precision: 0.6
 - recall: 0.36
- high recall group
 - threshold probability 0.12
 - precision: 0.35
 - recall: 0.75
- low probability group: predicted probability < 0.12

who is a minimum wage worker

Demographic Characteristics for Each Predicted Probability Decile

	Teen (1)	20 ≤ Age < 30 (2)	LTHS (3)	HSG (4)	Female (5)	White (6)	Black or Hispanic (7)
Most likely decile	.719	.038	.752	.145	.5 <mark>9</mark> 2	.837	.244
Probability decile 9	.047	.405	.534	.238	.6 <mark>7</mark> 4	.847	.359
Probability decile 8	.004	.341	.344	.437	.5 <mark>9</mark> 4	.834	.243
Probability decile 7	.004	.298	.187	.575	.571	.833	.351
Probability decile 6	.000	.191	.085	.660	.673	.873	.150
Probability decile 5	.000	.187	.100	.475	.492	.784	.253
Probability decile 4	.000	.178	.067	.236	.512	.794	.237
Probability decile 3	.000	.162	.004	.297	.404	.865	.175
Probability decile 2	.000	.088	.000	.143	.385	.848	.122
Least likely decile	.000	.015	.000	.039	.314	.741	.134

who is a minimum wage worker

labor market outcome

- \bullet 5-year averaged posttreatment estimates: $\frac{1}{5}\Sigma_{\tau=0}^4(\beta_{\tau}-\beta_{-1})$
- wage
 - high probability: 2.3%(SE, 0.3%)
 - high recall: 1.6% (SE, 0.3%)
 - low probability: -0.1% (SE, 0.3%)

high probability estimation

high recall estimation

hands-on machine learning

Let's apply the framework using Taiwan's Data

data

- source: , 2000-2006
- features: countycat, sex, martial, educat, agecat
 - martial: married or not
 - educat
 - 1: below junior high
 - 2: high school
 - 3: at least college
 - agecat: group every 5 years from 15 to 70 as one category

tidymodels

pipeline for training a machine learning models

- before training: preprocess and specify the model
 - recipes, parsnip
- 2 hyperparameters tuning and evaluation
 - rsample, tune, yardstick
- prediction and evaluation
 - yardstick

data

```
> data
# A tibble: 153,134 \times 6
  countycat sex martial educat agecat group
  <dbl+lbl> <dbl+ <dbl> <dbl> <dbl> <dbl> <
1 22 [高雄市] 1 [男]
                           2
                               40
                                     3
2 22 [高雄市] 0 [女]
                               20
3 22 [高雄市] 1 [男]
                               55
4 22 「高雄市] 0 「女] 1
                               45
5 22 [高雄市] 1 [男]
                                    2
                      0
                               30
                                     2
6 22 [高雄市] 1 [男]
                               40
                                     3
7 22 [高雄市] 1 [男]
                               25
8 22 [高雄市] 0 [女]
                               20
9 22 [高雄市] 1 [男]
                      0
                               30
                                     3
10 22 [高雄市] 0 [女]
                               20
# i 153,124 more rows
# i Use `print(n = ...)` to see more rows
```

helper function

```
set.seed(20230225)
split <- initial_split(data, prop=0.8, strata=group)</pre>
data_train <- training(split)</pre>
formula <- group ~ countycat + sex + martial + educat + agecat
create_workflow <- function(spec, preprocessor=formula){</pre>
    wf <- workflow() %>%
        add_model(spec) %>%
        add_formula(preprocessor)
    return(wf)
```

helper function

```
tune_result <- function(wf, grid){
    set.seed(20230225)
    cv <- vfold_cv(data_train, v=10, strata=group)
    res <- wf %>%
        tune_grid(
            resamples=cv,
            grid=grid,
            metrics=metric_set(pr_auc),
            # control=control_grid(save_workflow=T)
    return(res)
```

helper function

```
# fit on the training split and calculate the metric on testing split
r test <- function(model, name, preprocessor=formula){
    res <- last_fit(model, split=split, preprocessor=preprocessor) %>%
        collect_predictions() %>%
        mutate(model=name)

    return(res)
}
```

elastic net

```
en_spec <- multinom_reg(</pre>
    penalty=tune(), # regularization
    mixture=tune() # alpha: ratio of L1 and L2 regularization
) %>%
    set_mode("classification") %>%
    set_engine("glmnet")
wf <- create_workflow(en_spec)</pre>
grid <- expand.grid(</pre>
    penalty=seq(1e-5, 1e-2, length.out=20),
    mixture=c(0.1, 0.3, 0.5, 0.7, 0.9)
en_tune <- tune_result(wf, grid)</pre>
autoplot(en_tune)
elastic_net <- wf %>%
    finalize_workflow(select_best(en_tune, metric="pr_auc"))
elastic_net_test <- test(elastic_net, "Elastic Net")</pre>
```

elastic net

random forest

```
rf_spec <- rand_forest(
    mtry=tune(), # number of predictors
    trees=tune(), # number of trees
    min_n=tune() # stop split when the sample < min_n
) %>%
    set_mode("classification") %>%
    set_engine("ranger")
wf <- create_workflow(rf_spec)</pre>
grid <- expand.grid(</pre>
    mtry=c(4, 5),
    trees=c(100, 200, 300, 400, 500),
    min_n=c(200, 300, 400, 500, 600, 700)
rf_tune <- tune_result(wf, grid)
autoplot(rf_tune)
random_forest <- wf %>%
    finalize_workflow(select_best(rf_tune, metric="pr_auc"))
```

random forest


```
xgb_spec <- boost_tree(
    mtry=tune(), # number of predictors
    trees=tune(), # number of trees
min_n=tune(), # stop split when the sample < min_n(minimal node size)
    tree_depth=tune(), # usually: 3 ~ 10
    learn_rate=tune(),
    loss_reduction=tune(), # stop when loss reduction < loss_reduction(minimal loss reduction)
    sample_size=tune(),
    stop_iter=tune() # stop when iterations > stop_iter(iterations before stopping)
)    %>%
    set_mode("classification") %>%
    set_engine("xgboost")
```

- tuning strategy
 - 1 tune min_n, tree_depth
 - default suggestion
 - mtry: 80% of the predictors
 - trees: 200
 - loss reduction = 0
 - sample_size: 80% of the sample size
 - stop_iter = 2000(should be large enough)
 - tune mtry, sample_size
 - une trees, loss_reduction, stop_iter
 - tune the learn rate

```
wf <- create_workflow(xqb_spec)</pre>
arid <- expand.arid(</pre>
    mtry=5,
    trees=400,
    min_n=300,
    tree_depth=9.
    loss_reduction=1e-2,
    sample_size=0.9.
    stop_iter=800.
    learn_rate=seq(1e-1, 1, length.out=10)
xab_tune <- tune_result(wf, arid)</pre>
autoplot(xgb_tune)
xaboost <- wf %>%
    finalize_workflow(select_best(xgb_tune, metric="pr_auc"))
```


AUPRC

